Finite Volume Methods For Hyperbolic Problems

Product information

€97.14

Stock: In Stock Online

Our USPs

free delivery icon
Free Delivery
Extended Range: Delivery 3-4 working days
dubray rewards icon
Dubray Rewards
Earn 389 Reward Points on this title

Finite Volume Methods For Hyperbolic Problems

Product information

Author: R. Leveque

Type: PAPERBACK

ISBN: 9780521009249

Date: 29th August, 2002

Publisher: CAMBRIDGE UNIVERSITY PRESS

  1. Categories

  2. Applied Mathematics
  3. Calculus And Mathematical Analysis

Description

This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.

Additional details